Home | Site Map | Components | 555 | Symbols | Study | Books | Construct | Solder | Projects | FAQ | Links | Privacy
Electronics Club
electronicsclub.info

Simple Component and Continuity Tester

Download PDF version of this page

This simple project may be used for testing components, as well as checking circuit board tracks, wires and connections for continuity (conduction). It tries to pass a small current through the item being tested and the LED will light brightly, dimly or not at all according to the resistance of the item:

  • LED bright means the resistance is low, less than about 1kohm
  • LED dim means the resistance is medium, a few kohm
  • LED off means the resistance is high, more than about 10kohm
When not in use the 9V PP3 battery should be unclipped or the crocodile clips attached to a piece of card or plastic to prevent them touching. You could add an on-off switch in the red wire from the battery clip and this may be the best option if you mount the simple tester in a box.

If you think this project is too simple to be useful, please see the table of components which it can be used to test and think again!


Parts Required

Bitsbox
Hobbycraft
  • resistor: 390ohm
  • red LED 5mm diameter, standard type
  • battery clip for 9V PP3
  • crocodile clips: miniature red and black
  • stripboard: 5 rows × 7 holes


Stripboard Layout

Stripboard layout for simple tester


Testing stripboard, PCB tracks, wires and connections

Circuit diagram for simple tester
Circuit diagram
Connect a crocodile clip on each side of the suspected fault:
  • LED bright means there is a connection.
  • LED off means there is no connection.
If you are testing a stripboard or PCB which has components soldered in place, beware of possible connections via the components and allow for this when interpreting the results.

Stripboard circuits can suffer from two common problems: solder bridging between adjacent tracks making a connection where there should be none, and tracks broken with a track cutter which have an almost invisible thread of copper conducting across the break.

If a PCB has etched poorly the tracks may be very thin in places or there may be traces of copper bridging between adjacent tracks.

Wires and connections may be checked for continuity (conduction).


Crocodile clips attached to a signal diode

Testing components

Connect a crocodile clip on each side of the component. They can be connected either way round unless stated otherwise in the table below.
Component Test results for a component in good condition
Resistor LED bright for low resistance, less than about 1kohm.
LED dim for medium resistance, a few kohm.
LED off for high resistance, more than about 10kohm.
Variable Resistor Across the two ends of the track the LED brightness will depend on the resistance value (see above).
Between one end of the track and the wiper you should see the LED brightness vary as you adjust the variable resistor. However, for high resistances (>10kohm) the LED will only light near one end of the track.
Diode

Diode anode (a) and cathode (k)

LED bright with red lead to anode and black lead to cathode (stripe).
LED off with black lead to anode and red lead to cathode (stripe).

a = anode, k = cathode (the end with a stripe)

Zener Diode

Zener diode anode (a) and cathode (k)

LED bright with red lead to anode and black lead to cathode (stripe).
LED dim with black lead to anode and red lead to cathode (stripe) if the zener diode voltage is less than about 7V.
LED off with black lead to anode and red lead to cathode (stripe) if the zener diode voltage is greater than about 7V.

a = anode, k = cathode (the end with a stripe)

LED
Light Emitting Diode

LED anode (a) and cathode (k)

LED bright with red lead to anode and black lead to cathode (short lead) - the LED being tested will also light.
LED off with black lead to anode and red lead to cathode (short lead).

a = anode (long lead), k = cathode (short lead, flat on body)

Transistor

 

NPN and PNP transistor symbols

B = base, C = collector, E = emitter

Please refer to a supplier's
catalogue or website to
identify the leads.

For each pair of transistor leads connect the tester leads first one way, then the other way.

These are the results for an NPN transistor in good condition:
CE pair: LED off both ways.
BC pair: LED bright with red lead on B, LED off the other way.
BE pair: LED bright with red lead on B, LED off the other way.

These are the results for a PNP transistor in good condition:
CE pair: LED off both ways.
BC pair: LED bright with black lead on B, LED off the other way.
BE pair: LED bright with black lead on B, LED off the other way.

Note that you can use the tester to identify the B lead (the one which always conducts one way) and to distinguish NPN and PNP transistors (by the tester lead colour when B conducts). However, the tester cannot distinguish the C and E leads.

Capacitor
less than 1µF
LED off.
Please bear in mind that a broken connection will give the same result.
Capacitor
1µF and greater
If the capacitor is polarised (most will be) connect the red lead to positive (+) and the black lead to negative (-).
The LED will flash briefly when first connected.
Reverse the connections: the LED will give another brief flash.
With low values like 1µF the flash will be almost too brief to see, but larger values such as 100µF will give longer flashes. Electrolytic capacitors may leak a little when connected the wrong way round, making the LED light dimly continuously.
LDR
Light Dependent Resistor
LED bright when the LDR is in bright light.
LED dim when the LDR is in normal room light.
LED off when the LDR is in darkness.
Thermistor LED dim when the thermistor is warm.
LED off when the thermistor is cold.
These are typical results, the exact results depend on the thermistor's resistance.
Lamp LED bright.
Note that the lamp itself will NOT light because the test current is too small.
Switch LED bright when switch contacts are closed (on).
LED off when switch contacts are open (off).
Note that you can use the tester to identify the switch contacts if necessary.
Fuse, Motor, Loudspeaker, Inductor, Relay coil, Wire LED bright.


© John Hewes 2014, electronicsclub.info (based in the UK)
No part of this website may be reproduced in any way commercially without my prior permission.

Site Map

Top of page

Home
Downloads
Books
FAQ
Contact
Discounts
Links

Construction
 - Breadboard
 - Stripboard
 - PCB

Soldering
 - Tools
 - Workbench

Components
 - Capacitors
 - Connectors
 - Diodes
 - ICs ('Chips')
 - CMOS logic ICs
 - 74 series ICs
 - Lamps
 - LEDs
 - Relays
 - Resistors
 - Switches
 - Transistors
 - Variable Resistors
 - Others
 - Starter Kit

555 Timer IC

Study
 - Block Diagrams
 - Circuit Diagrams
 - Circuit Symbols
 - Electricity/Electron
 - Series & Parallel
 - Voltage & Current
 - Meters
 - Multimeters
 - Resistance
 - Ohm's Law
 - Power & Energy
 - AC & DC Signals
 - Oscilloscopes
 - Power Supplies
 - Transducers
 - Voltage Dividers
 - Transistor Circuits
 - Analgoue & Digital
 - Logic Gates
 - Capacitance
 - Impedance
 - Counting
 - Quantities & Units
Projects
 - Dummy Alarm
 - Quiz
 - Traffic Light
 - Dice
 - Model Lighthouse
 - Simple Tester
 - Flashing LED
 - Electronic 'Lock'
 - Adjustable Timer
 - Light Alarm
 - Xmas Decoration
 - Railway Signal
 - Level Crossing
 - Lead Tester
 - 'Random' Flasher
 - Heart Badge
 - Valentine Heart

More Projects

Kits for Children

Electronics Club

Tsohost
Use coupon code
electron10 for 10%
discount off hosting
Privacy Policy & Cookies
This website does not collect any personal information unless you contact me by email. If you send me an email your name, email address, and any other personal information you supply will be used only to respond to your message. Your personal information will never be given to any third party without your permission.
This website displays affiliate advertisements. If you click on these advertisements the advertiser will know you came from this site and I may be rewarded if you become their customer. No personal information is passed to advertisers.
This website uses StatCounter cookies to estimate the number of unique visitors. No personal information is stored in the cookies. If you would like further information or wish to refuse these cookies please visit the StatCounter website.
To learn how to delete and control cookies from your browser please visit AboutCookies.org.